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We examine - both experimentally and numerically - a two-dimensional nonlinear driven electrical lattice 
with honeycomb structure. Drives are considered over a range of frequencies both outside (below and 
above) and inside the band of linear modes. We identify a number of discrete breathers both existing in 
the bulk and also (predominantly) ones arising at the domain boundaries, localized either along the arm-
chair or along the zig-zag edges. The types of edge-localized breathers observed and computed emerge in 
distinct frequency bands near the Dirac-point frequency of the dispersion surface while driving the lattice 
subharmonically (in a spatially homogeneous manner). These observations/computations can represent a 
starting point towards the exploration of the interplay of nonlinearity and topology in an experimentally 
tractable system such as the honeycomb electrical lattice.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Honeycomb lattices have attracted substantial interest within 
the physics community in recent years, due to their inherent 
potential of topological surface phenomena [1]. The interplay of 
topology and wave dynamics (both at the linear and more recently 
at the nonlinear level) has had significant impact both in the realm 
of optics [2] and in that of acoustic/mechanical systems [3,4]. Non-
linearity further adds to the complexity and the wealth of this in-
terplay, especially since in settings such as optics [5–8] and atomic 
physics [9,10], it emerges spontaneously for large amplitude/den-
sity excitations.

In two dimensions (2D) the foremost example of honeycomb 
material is, of course, graphene [11–13]. One of the most intensely 
studied macroscopic analogues is photonic graphene, and edge-
localized states were soon predicted to exist in such materials 
[14–17]. Furthermore, the role of nonlinearity in this context is 
beginning to be examined (see e.g., [14,15]), yet there are still nu-
merous avenues worth exploring in this context relating to the 
impact of nonlinearity, especially in experimentally tractable set-
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tings. In the linear regime, some pioneering experimental results 
have appeared in the literature in photonic graphene that show 
the existence of edge-localized states [18,19], and these were even 
shown to propagate in one direction only, upon breaking the time-
reversal symmetry [20]. Yet, we argue that the identification of 
unprecedented, experimentally controlled settings where nonlinear 
states (both bulk and edge ones) can be obtained is of value to the 
efforts towards understanding nonlinear topological structures and 
how they differ from their more standard, non-topological variants 
(as well as how such states vary from linear topological ones). In 
that vein, we propose as a platform worth exploring the setting of 
honeycomb electrical lattices.

More concretely, in this paper we report on a series of findings 
of nonlinear waves in a 2D electrical honeycomb lattice. That in-
trinsic localized modes, also known as discrete breathers (DBs) can 
exist in square lattices of this kind has been shown previously [21]. 
In fact, such modes are well-known to exist in a wide range of 
physical settings, summarized, e.g., in a number of reviews [22,23]. 
Here, however, we focus on the role of the honeycomb geome-
try and drive the system over a wide range of frequencies both 
within as well as outside the band of small amplitude excitations. 
We find both experimentally and numerically that not only can 
bulk-localized modes be identified in this setting, but also edge-
localized modes can be excited with a spatially homogenous, sub-
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harmonic driver. These DBs bear frequencies around that of the 
Dirac points. The exact DB frequency depends on the wave ampli-
tude, as expected from a soft nonlinear system, but interestingly 
also on the type of edge. The relevant zig-zag edge-localized DBs 
are found to exist within a frequency band that is higher, in terms 
of frequencies (and non-overlapping) compared to the arm-chair 
mode band. We complement these results with a numerical stabil-
ity analysis and find that these discrete breathers do not appear 
to derive from a continuation of linear modes, but that they come 
into existence via (saddle-node) bifurcation phenomena. Our find-
ings constitute a first step towards the more systematic examina-
tion of stable bulk and edge modes in such honeycomb electrical 
lattices and we hope will spurt further efforts in this direction.

Our presentation is structured as follows. In section 2 we 
present the mathematical model associated with the experimen-
tal setting of interest, i.e., the honeycomb lattice of LC resonators. 
The underlying linear modes are identified and their band is ob-
tained for parameters associated within the experimental range in 
Section 3. Subsequently, in section 4, we present an anthology of 
experimental and numerical results for similar conditions between 
the experiment and the numerical computation. The findings are 
presented for different values of the driver frequency, progressively 
moving from frequencies below the band to ones above the band 
of linear states. Finally, we summarize our findings and present 
our conclusions and some challenges arising towards future work 
in Section 5.

2. The model

The experimental system investigated in this paper is a honey-
comb lattice consisting of unit cells in the form of LC resonators, 
whose nonlinearity is originated by using a varactor diode instead 
of the standard capacitor. These nonlinear resonators are coupled 
together into a two-dimensional lattice via coupling inductors. 
Such a system was studied in a previous publication [21], where 
it was found that stable two-dimensional ILMs/discrete breathers 
could be produced. That study used periodic boundary conditions 
exclusively, thus eliminating any lattice edges. In the present study, 
we have used free-end boundary conditions, allowing a pair of 
both zig-zag and armchair edges. This has permitted us to investi-
gate the dynamical interplay between lattice edges and nonlinear 
localized states.

More concretely, our use of a varactor diode (NTE 618) intro-
duces a specific (experimentally determined) nonlinear capacitance 
C(V ). We also use inductors of value L2 = 330 μH, and the re-
sulting unit cells are driven by a periodic voltage source E(t) of 
frequency f (i.e., the driving is uniform) via a resistor R = 10 k�. 
Each single unit is coupled to its three neighbors via inductors 
L1 = 680 μH building a honeycomb lattice.

Using basic circuit theory, the system can be described by the 
equations [21,24],
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where the sum ( j, k) is taken over the nearest neighbors of the 
(n, m) node and Kn,m is the number of neighbors of node (n, m). 
Kn,m is equal to three in an infinite lattice (or finite lattice with pe-
riodic boundary conditions), but in a finite lattice with free bound-
aries it could be either Kn,m = 1 or Kn,m = 2 on the edges, depend-
ing on the particular lattice node. The varactor can be modeled as 
a nonlinear resistance in parallel with a nonlinear capacitance. As 
shown in [24], the nonlinear current I D(V ) is given by

I D(V ) = −Is exp(−βV ), (2)

where β = 38.8 V−1 and Is = 1.25 × 10−14 A, and its capacitance 
C(V ) as

C(V ) =
{
Cv + C1(V − Vc) + C2(V − Vc)

2 if V ≤ Vc,

C0e−αV if V > Vc,
(3)

where C0 = 788 pF, α = 0.456 V−1, Cv = C0 exp(−αVc), C1 =
−αCv , C2 = 100 nF and Vc = −0.28 V.

The following dimensionless variables were used in Eq. (1): 
τ = ω0t , where ω0 = 1/

√
L2C0; � = 2π f /ω0 is the dimensionless 

driving frequency; the dimensionless voltage vn,m = Vn,m/Vd , with 
Vd representing the voltage amplitude of the driving; in,m = (I v −
I2)/(C0ω0Vd), where I v is the full current through the unit cell 
and I2 the current through the inductor L2, both corresponding 
to cell (n, m) and iD = I D/(C0ω0Vd). A phenomenological dissipa-
tion resistor, Rl , was included in the model to better approximate 
the experimental dynamics and Re is the equivalent resistance so 
1/Re = 1/R + 1/Rl . In all cases, the ratio L2/L1 characterizes the 
strength of the effective discreteness of the system (with the un-
coupled limit obtained for L1 → ∞). We should add that this is 
still only a simplified model of the varactor diodes, and compari-
son between theoretical and experimental results will not be exact. 
Yet, it is an important first step in the modeling effort towards un-
derstanding this setup.

3. Linear modes

In the linear limit (c(v) = 1, id = 0) the undriven and un-
damped system reduces to

d2vn,m

dτ 2
= L2

L1

⎛
⎝∑

j,k

v j,k − Kn,mvn,m

⎞
⎠ − vn,m. (4)

Linear modes can be found as plane-wave solutions. An infinite 
lattice (with nearest neighbor spacing of 1) can be generated from 
lattice vectors e± = (1/2, ±√

3/2) (see e.g. [25]), and the disper-
sion relation ω(k), with k = (kx, ky), is given by

ω2 = 1

C0L2
+ 1

C0L1
[3± (5)

√
3+ 2cos(

√
3ky) + 4cos(3kx/2) cos(

√
3ky/2)

]
,

which yields a band of frequencies between fmin = √
1/(C0L2)/

(2π) ≈ 312 kHz and fmax = √
1/(C0L2) + 6/(C0L1)/(2π) ≈ 617 

kHz. As shown in Fig. 1, the band structure corresponds to a 
graphene-like surface where six Dirac points exist at a frequency 
of ωd = √

3/(C0L1) + 1/(C0L2), or fd = ωd/2π ≈ 489.11 kHz.
In a finite lattice, wave vectors k are quantized. However, this 

quantization depends on the boundary conditions and the way the 
lattice is tiled. Because of this, one must be very cautious with the 
choice of boundary conditions, the way the honeycomb is gener-
ated and the lattice size if the Dirac point is intended to be in the 
linear mode spectrum. For periodic boundary conditions, an ex-
plicit expression of the eigenfrequencies can be attained [25], but, 
for free ends boundary conditions, one must rely on the numerical 
solution of Eq. (4) for getting the linear mode spectrum.

In the present study, experimental limitations restrict us to 
a lattice of 6 × 6 nodes, distributed as shown in Fig. 2. The 
boundaries are free, as we are interested in seeking edge-localized 
breathers, as shown below. With this particular choice, there is 
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Fig. 1. Typical band structure of the infinite honeycomb lattice in the 
first Brioullin zone. There are six Dirac points corresponding to (kx, ky) =
(0, ±4π/(3

√
3)), (2π/3, ±2π/(3

√
3)), (−2π/3, ±2π/(3

√
3)) and a frequency fd =

489.11 kHz, cf. Eq. (5).

Fig. 2. Finite size (6 × 6) lattice with free boundaries; shown is the Dirac mode, 
i.e. the linear mode corresponding to f = f D = 489.11 kHz. Black and white circles 
correspond, respectively, to a normalized amplitude in t = 0 of 1/2 and −1.

a sole eigenmode oscillating with the Dirac frequency f = fd =
489.11 Hz. Fig. 2 also shows the oscillation pattern of such eigen-
mode (Dirac mode), which is similar to the oscillation pattern in 
an infinite lattice. We have checked that this sole Dirac mode is 
present when tiling this lattice to a larger one with 6N × 6M with 
(N, M) ∈N nodes.

In addition, the structure of the edges of our lattice can be cru-
cial for the formation of edge-localized breathers. According to the 
types of edge modes on graphene-like systems [17], our system 
should be able to support both vertical zigzag and horizontal arm-
chair edge-localized breathers.

4. Nonlinear modes: numerical and experimental results

In this section, we will describe some numerical and experi-
mental results on the existence of DBs when the electric lattice is 
driven uniformly. We have observed two kinds of such DBs, de-
pending on whether they are localized on the lattice boundaries 
or elsewhere. We will call these DBs edge breathers (EBs) or bulk 
breathers (BBs), respectively, hereafter. The latter owe their exis-
tence to the intrinsic nonlinearity of the lattice (see e.g. [21,24]). 
In the former case, there is an interplay between nonlinearity and 
the nature of the coupling in the vicinity of the boundary. In or-
der to numerically generate nonlinear modes we have to select 
the right initial conditions but, experimentally, the modes form 
spontaneously due to noise and instability. I.e., small amplitude 
excitations are amplified and spontaneously give rise to the forma-
tion of the nonlinear coherent waveforms observed. The existence 
and stability of the breathers depends on the external driving am-
plitude, its frequency and its shape. In general, upon increasing of 
external amplitude, breathers have larger amplitude and are nar-
rower, yet at the same time their existence interval is found to 
shrink. A more detailed study of the range of existence and sta-
bility of breathers as a function of amplitude and frequency is 
out of the scope of this work and could be the focus of further 
study.

4.1. Driving near the lowest frequency mode

Having constructed the 6 × 6 honeycomb lattice of Fig. 2, the 
simplest experiment we can perform is to drive the lattice with 
a sinusoidal-wave profile and a frequency close the bottom of 
the linear modes band, as the lowest frequency mode is uniform 
(k = 0, i.e., the same wavevector as that of the driver). This is 
performed in a progression of frequencies starting from outside 
(under) the linear mode band and systematically increasing the 
frequency of the drive. When the driver frequency is near the 
bottom of the linear band (i.e. f � fmin), we can generate ex-
perimentally both BBs and EBs, where the latter seems to be the 
most robust state between the two. Under the same conditions, 
in our theoretical model we find that only EBs exist. Alternatively, 
the use of periodic boundary conditions enables the existence of 
BBs for such frequencies. Fig. 3 shows a numerical bulk breather 
corresponding to a 6 × 6 lattice with periodic boundaries and its 
Floquet multipliers spectrum (see e.g. [23] for more details on Flo-
quet analysis for discrete breathers). Recall that the existence of 
the corresponding multipliers solely within the unit circle for our 
driven/damped system indicates its spectral stability. In that fig-
ure, we also show the experimental BB obtained in the finite size 
lattice with free boundary conditions. In both cases the driver am-
plitude was set to 2.1 V and the frequency was 278 kHz. This is a 
representative example of such BBs within their relevant interval 
of existence (see also the discussion below).

Similarly, we can induce EBs which are, as indicated above, 
more robust than BBs. Fig. 4 shows an example of the theoreti-
cal and experimental features of an EB whose driving parameters 
are the same as for the BB of Fig. 3. The existence of both kinds of 
solutions for the same system parameters indicates the multista-
bility of the system, given the different branches (bulk vs. edge) of 
solutions. That is, the regions of existence for the different kinds 
of breathers substantially overlap. The EBs are found to be some-
what more stable in the following sense: as we lower either the 
frequency or the amplitude of the driver (starting from 278 kHz 
and 2.1 V), the BB will disappear first, before the EB ceases to 
exist. This means that there is a small window in driving param-
eters where only edge breathers can be stabilized. This finding, 
i.e. the wider range of stabilization of the EB relative to the BB, 
has been also experimentally observed in a chain of coupled pen-
dula [26].

It should be mentioned that breathers can also be generated 
via subharmonic driving. In that case, breathers (which are also 
denoted as subharmonic breathers) are characterized by a core (i.e. 
the peak and large amplitude nodes around it) oscillating with 
half of the driver frequency whereas tails oscillate with the driving 
frequency (see [28]). Unlike what is observed in the experiments 
(featuring both BBs and EBs), it seems that numerically only sub-
harmonic EBs are stable for this 6 × 6 lattice with free boundaries 
(the analysis of subharmonic breathers in larger lattices will be the 
subject of further studies). The observation of long-lived subhar-
monic BBs in the experiment may be due to small spatial inhomo-
geneities in the lattice facilitating their stabilization [24]. In terms 
of the subharmonic EBs, a good agreement is found regarding both 
their existence and their dynamical robustness.
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Fig. 3. (a) Numerical bulk breather (BB) profile in a 6 × 6 lattice with periodic boundaries. (b) Experimental BB in the 6 × 6 lattice with free boundary conditions. (c) Floquet 
multiplier spectrum corresponding to the numerical breather showing all the multipliers lying within the unit circle (and thus leading to the conclusion of spectral stability 
of such breathers). (d, e) Density plots corresponding to (a, b). V rms in panels (a) and (b) stands for the root mean square of the voltage during a period. In both cases the 
sinusoidal driver amplitude was set to 2.1 V and the frequency was 278 kHz. (For interpretation of the colors in the figure(s), the reader is referred to the web version of 
this article.)

Fig. 4. Same as Fig. 3 but for an edge breather (EB) in a free-boundary lattice.
4.2. Driving near the Dirac point

As the driver frequency is increased from around 280 kHz, we 
first start producing more breathers in the lattice, as expected 
from previous studies [27]. Then, at higher frequencies, the lat-
tice response gradually weakens. The modes at the Dirac point 
(with frequency 489.11 kHz) cannot be stimulated directly; this is 
a consequence of the fact that the Dirac mode possesses a non-
zero wavevector, whereas the driver is associated with the zero 
wavevector.

At higher driving amplitudes, however, lattice response in the 
vicinity of the Dirac point can be induced via subharmonic driv-
ing. Both subharmonic BBs and EBs, which are excited close to the 
Dirac point frequency, are similar to the ones produced via direct 
driving although the oscillation frequency of the excited sites is the 
half of that of the driver and the breather tail (see also Ref. [28]). 
If the (sinusoidal) driver amplitude is increased to 9 V, a clear lat-
tice subharmonic response is observed in the range (530, 695) kHz. 
When using a square-wave driving profile, this range is slightly 
expanded; this phenomenon, which has been reported recently 
for non-sinusoidal drivings, is related to the enhancement of the 
“mechanical” impulse transmitted to the lattice from the driver, 
facilitating the generation of stationary breathers in experiments, 
as well as in numerical computations [29].

Above the upper edge of this frequency window, the lattice re-
sponse goes to zero again (at least for the uniform driving used ex-
perimentally). Then, starting at 886 kHz and using a square-wave 
driving at 9 V (no subharmonic response has been found for this 
range of frequencies using sinusoidal driving), an EB appears firstly 
along the armchair edge of the honeycomb lattice (also dubbed as 



F. Palmero et al. / Physics Letters A 384 (2020) 126664 5

Fig. 5. Same as Fig. 4 but for a subharmonic armchair-EB with a square-wave driving profile of amplitude 9 V. The driving frequency was 960 kHz in numerics and 940 kHz 
in experiments.

Fig. 6. Same as Fig. 5 but for a subharmonic zig-zag-EB. The driving frequency was 1000 kHz in numerics and 960 kHz in experiments.
armchair-EB). In experiments this mode persists up to a frequency 
of 940 kHz, corresponding to a response frequency at the breather 
peak of 470 kHz. Numerical simulations show similar results, as 
represented in Fig. 5.

At a driver frequency of 950 kHz, we witness an abrupt switch 
to an EB along the zig-zag edge of the lattice (also dubbed as zig-
zag-EB). Such a breather, whose main features are shown in Fig. 6, 
persists up to a driving frequency of 967 kHz. In general, numer-
ics are in qualitative agreement with the experiments. The switch 
between these two types of edge breathers as the frequency is 
adiabatically increased is very reproducible. This clearly suggests 
the different intervals of stability of the two edge configurations, 
indicating which one is the system’s lower energy state for the 
different frequency regimes.

Fig. 7 examines the armchair-EB more closely. Here we show-
case the most nonlinear, and therefore most localized version of 
that mode at a driving frequency of 886 kHz. As it can be seen 
from the experimental pattern depicted in panel (b), there are two 
of such EBs at the opposite sides of the lattice. Comparing to Fig. 2, 
one can observe in both cases a sharp localization of the energy at 
the outermost node-pairs along the armchair edges. It is evident, 
from the detailed time-dependent oscillations pattern of panel (c), 
that the two largest-amplitude nodes in the top of the lattice os-
cillate in anti-phase, indicating that k 	= 0 for this EB. Once again, 
numerical simulations are in good agreement with experimental 
results. Similar features (not shown here) are shared with zig-zag-
EBs.

In general, the frequency of the main peak of all subharmonic 
nonlinear modes belongs to the linear spectrum of the infinite lat-
tice. There are multiple features that can allow for this. While the 
damping changes the spatial extent of the linear modes and the 
nature of their resonance of breathers with phonons, arguably a 
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Fig. 7. (a) Experimental subharmonic armchair-EB profile in a 6 × 6 lattice with free boundaries and (b) its corresponding density plot. The square-wave driving amplitude 
was set to 9 V and the frequency to 886 kHz. (c) Time dependence of the voltage at the two largest amplitude nodes on the top of the lattice: numerical simulations are 
shown by black continuous and dashed lines, whereas experimental data are shown in blue and red lines.

Fig. 8. (a) Same as Fig. 5(a) and (b) Fig. 7(a) in a 12 × 12 lattice. (c) Numerical bulk breather profile in a 12 × 12 lattice with free boundaries, where the sinusoidal driver 
amplitude was set to 2 V and the frequency was 270 kHz.
more central reason is that the small size of the lattices opens gaps 
in the spectrum allowing for the existence of breathers whose fre-
quency is in one such gap [21,24,28,30].

On the other hand, in order to better understand the nature of 
edge localization, we have explored the behavior of these local-
ized edge modes in larger lattices. Performing some prototypical
numerical computations in a 12 × 12 lattice, as shown in Fig. 8(a) 
and (b), the results are qualitatively similar to those obtained in 
smaller lattices. Note that in order to keep the structure of the 
phonon band and for the Dirac point to appear, we need to tile 
the “unit cell” of 6 × 6 lattice sites. The findings suggest that edge 
breathers arise as a result of the interplay between the nonlinear-
ity and the finite size of the lattice. Also, numerical bulk breathers 
exist in free boundary lattices, as shown in Fig. 8 (c).

Edge breathers around the above mentioned frequency ranges 
i.e. f ∈ [886 − 967] kHz were not found to occur in the square lat-
tice, thus seeming to be particular to the honeycomb geometry and 
its associated boundary geometry. Furthermore, it is an interesting 
fact that zig-zag-EBs and armchair-EBs are found to occupy such 
distinct frequency bands around the calculated Dirac frequency, as 
shown in Fig. 9. We do not get any BB with this set of bound-
ary conditions; rather, only EBs arise. An example of a bifurcation 
diagram featuring a pair of saddle-node bifurcations for numeri-
cally calculated subharmonic EBs is shown in Fig. 10. In general, 
we have found that this scenario of saddle-node bifurcations for 
the destabilization of solutions is fairly generic (results not shown 
here) and suggests that breathers may exist in intervals of this sort 
(amplitude and frequency of the driving). It is only within these in-
tervals, possibly determined via resonance with linear modes, that 
breathers are found to exist and potentially (as is, e.g., the case for 
the node branch) be stable. Analyzing such features in more detail 
turns out to be a rather delicate task due to the existence of nu-
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Fig. 9. Stability range versus driving frequency for different kinds of numerically 
calculated EBs together with the linear modes band, which is represented as a yel-
low region; Dirac point ( fd) and twice its value are depicted as black horizontal 
lines. Green region corresponds to (direct-driven) EBs with Vd = 2.1 V (cf. Fig. 4). 
(b) Subharmonic armchair-EBs driven by Vd = 9 V (cf. Fig. 5) are represented by the 
cyan region, and the lighter cyan region overlapping part of the linear modes band 
corresponds to the subharmonic oscillations of the breather peak. Similarly to the 
armchair-EB case, the red region and the lighter red one in the linear modes band 
correspond to subharmonic zig-zag-EBs.

Fig. 10. V rms on peak node of the numerically calculated subharmonic EBs (solu-
tions in red and cyan at Fig. 9), as a function of the frequency. Stable solutions are 
depicted as continuous lines and unstable solutions as dotted lines. The red line 
marks twice Dirac frequency (2 fd).

merous branches in a complex bifurcation diagram. For this reason, 
a more exhaustive study is deferred to a future publication.

5. Conclusions & future work

Naturally, the above findings constitute only a first step in the 
emerging rich study of localized modes and the breathing dy-
namics in honeycomb electrical lattices. Here, we have explored 
the arguably most canonical and experimentally more straightfor-
wardly tractable case of a uniform drive of zero wavevector. At 
frequencies below the linear band, we have found that this drive 
leads to the formation of bulk, as well as edge breathers, with the 
latter being more robust than the former. However, our most sig-
nificant finding concerns the subharmonic drive in the vicinity of 
twice the frequency of the Dirac point. There, depending on the 
frequency interval, both armchair and zigzag edge breathers can 
arise, with each one appearing as the stable state in a respective 
interval frame.

There are numerous questions that still remain worthwhile to 
answer. Is it possible to achieve more elaborate forms of driving 
so as to excite higher order states? At the same time, it appears to 
be relevant to develop a systematic continuation analysis, e.g., at 

the Hamiltonian level of the corresponding linear and also subhar-
monic waves and their expected role in the bifurcation diagram. 
Understanding whether these edge states enjoy topologically in-
duced propagation properties (e.g. through the lattice boundary) 
is an important question worth considering in its own right. Fur-
thermore, the experimental tractability of electrical lattices renders 
them interesting candidates for formulating additional lattices with 
intriguing topological properties such as, e.g., some of the artificial 
flat band systems recently summarized in [31].
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